

Indiana State Math Contest 2023 Algebra I/Integrated I Exam

This test was prepared by faculty of Butler University Jennifer Cox, Ph.D.

Mark your calendar:

ICTM State Awards Ceremony 2023: Friday, June 9, 2023 ICTM State Math Contest 2024: Saturday, April TBA, 2024

Do not open this test booklet until you have been advised to do so by the test proctor.

, 13).
,

A13.5	В7	C. 2	D. 7	E. 19

2. For the functions $f(x) = x^2 - 8$ and $g(x) = \frac{4}{x+7}$, what is the value of $f(5) - g(-8)$?					
A68	B7	C. 13	D. 21	$E\frac{17}{4}$	

3. In the following number puzzle, suppose A, B, and C are all unique digits and B > C. What is the value of 4A + 3C?

A9B					
<u>+35C</u>					
1057		0.54	5.04		
A. 48	В. О	C. 51	D. 24	E. 27	
	- 10 what is the value	of ⁶)			
4. If $5x + 4 =$	18, what is the value 2	OT $\frac{1}{5x-7}$?	6	6	
A. 6	B. $\frac{2}{21}$	C. $\frac{7}{6}$	D. $\frac{3}{7}$	E. $-\frac{3}{7}$	

5. Carter works at the school concession stand with two of his friends. At one basketball game, they sold 36 Blowpops for 50 cents each, 40 bowls of nachos for \$3.50 each, 40 hotdogs for \$2 each, and 50 bags of popcorn for \$2 each. At the start of the game, they had \$70 in the register. How much money should be in the register at the end of the game?

A. \$78	B. \$338	C. \$370	D. \$408	E. \$426	
6. Suppose (2:	$(x^a y^{-2})^6 = \frac{64x^{12}}{y^{3b}}$. Find	I the value of $a - b$.			
A. 2	B2	C. 0	D. 6	E6	

7. Simplify the expression $x^4 \cdot \sqrt{20y^8} \cdot \sqrt{720x^{12}y^{22}}$.

A.
$$120x^{10}y^{15}$$
 B. $12x^{10}y^{15}\sqrt{50}$ C. $60x^{24}y^{44}\sqrt{2}$ D. $12x^{24}y^{44}\sqrt{50}$ E. $3600x^{10}y^{15}$

8. What is the solution to the compound inequality $5(1-2x) + 3 \le 7$ and $0.1(70x + 10) - \frac{1}{2} < 8.2$? A. $x > \frac{11}{10}$ B. $x \ge \frac{1}{10}$ C. $x \le \frac{1}{10}$ and $x > \frac{11}{10}$ D. $\frac{1}{10} \le x < \frac{11}{10}$ E. No solution

9. Solve the absolute-value equation $4\left \frac{1}{2}x-1\right +7=19$.							
A. $x = -4$ and	d x = 8	x = -8 and x = 4	C. $x = -1$ and $x =$	2			
D. $x = 1$ and x	x = -2 E	. No solution					
10. A number b that the sum of	etween 0 and 1 has these digits is 9. If t	a digit in the tenths place a he digits are reversed, the i	and a digit in the hund number is increased b	Iredths place such by 0.27. Find the			
A. 0.27	B. 0.72	C. 0.36	D. 0.63	E. 0.45			
11. A collection	of 107 nickels, dime	es, and quarters is worth \$1	.4.85. There are 14 m	ore nickels than			

dimes. How many dimes are there?							
A. 8	B. 10	C. 12	D. 26	E. 40			

12. Using the images of the circle and equilateral triangle below, find the values of the lengths a, b, and c and put them in order from least to greatest.

	Area =	8π in ² a 60° 2 in	C 60°	
A. a < b < c	B. a < c < b	C. b < a < c	D. c < a < b	E. c < b < a
13. There are two s A. $\frac{13}{12}$	solutions to the equ B. $-\frac{13}{12}$	uation $24x^2 = 15 - 2$ C. $\frac{12}{13}$	26 <i>x</i> . Find the sum of D. $-\frac{12}{13}$	the two solutions. E. –26
14. When you mult	iply the following p	polynomials, what is t $(3x^2 - 2x + 7)(5x)$	he coefficient on the $c + 8)$	x^2 term?
A. 24	В10	C. 14	D. 34	E16
15. Simplify $\left(\frac{3a^4b}{6a^4b^{-1}}\right)$	$\left(\frac{1}{3}c^{-2}\right)^2$ as much as p	oossible. Use only pos	itive exponents in yo	our solution.
A. $4b^2c^{14}$	$B.\frac{b^2}{4}$	C. $\frac{9b^2}{36c^{14}}$	D. $\frac{b^2 c^{14}}{4}$	$E.\frac{a^8bc^7}{4}$

16. Gear B is moving a rate of 5 full rotations every minute. How many rotations does Gear A make in 24 minutes?

17. Sonya notices a leak under her sink, but the plumber cannot come until 3:00 pm. She places a bucket under the sink. After 30 minutes, she finds the container to be 5/6 full. She dumps the container outside and quickly puts it back under the sink at 2:15 pm. She decides to set an alarm for **two minutes** before the container is full, so she doesn't forget to dump it! What time does she input? A. 2:43 pm B. 2:45 pm C. 2:47 pm D. 2:49 pm E. 2:51 pm

18. Solve the ed	quation $x\sqrt{100} + \frac{5}{2^4}x^2 - \sqrt[3]{100}$	$\overline{64x^3} + \frac{3}{4^2}x^2 = \frac{\sqrt{83}}{3}$	$\frac{1}{2}x^{2}$.	
A. $x = 0$	B. $x = 0$ and $x = 1$	C. $x = \pm 1$	D. <i>x</i> = 2.4	E. $x = 0$ and $x = \frac{12}{5}$

19. Brianna selected a number b. She divided b by 3 and then subtracted $\frac{1}{3}$ from the result. She took half of that result and subtracted $\frac{1}{3}$ to get a final result of 10. What is the value of b?

A. $\frac{10}{3}$	B. $\frac{25}{6}$	C. 57	D. 63	E. 66
20. Find the y- A. 8	-coordinate for the sol B. 9	lution of the sys C. 17	tem of equations $\begin{cases} 2x - \frac{1}{2}x - \frac{1}{2}$	-y = 7 $-1 = \frac{1}{3}y$ ons E. No solution
21.What are t A. <i>D</i> : <i>x</i> ≤ 7; D. <i>D</i> : <i>x</i> ≤ 7;	he domain and range <i>R</i> : <i>y</i> < 0 <i>R</i> : All real numbers	of the function J B. D: x > E. D:All 1	$f(x) = \sqrt{7 - x}?$ • 7; R: y \ge 0 real numbers; R: y \le 0	C. $D: x \le 7; R: y \ge 0$

22. Two points on the linear equation Mx + Ny = 17 are (-3, 10) and (6, -8). Find 3M + 2N. A. 0 B. 34 C. -17 D. 8.5 E. 68

23. Find the distance	23. Find the distance between the two points (-2, 11) and (-10, 17).					
A. 10	B. √10	C. 2√7	D. 25	E. 50		
24. There are two so	lutions to the equation	on $(2x - 1)^2 = 49$. F	ind the average of th	e two solutions.		
A. 0	$B_{.}-\frac{1}{2}$	C. ¹	D. 1	E1		
	2	2				
25. Solve the absolut	$\frac{1}{2}$	1 - 5x + 9 < 12				
25. Solve the absolut	$\frac{1}{3}$	$4 - 5x + 0 \le 12.$				
A. $0 \le x \le \frac{16}{5}$	B. $-\frac{16}{5} \le x \le \frac{8}{5}$	$C_{-}-\frac{8}{5} \le x \le \frac{16}{5}$	D. All real numbers	E. No solution		
5	5 5	5 5				
	$3 \dots^2 \dots \dots \dots \dots \dots \dots$	h				
26. The equation $3x^2$	$x^{2} - x^{2} - \kappa x + 9 = 0$	has three solutions:	x = -3, x = 3, and x	t = 1/3. Find the		
value of κ .	р 2	C 27	72 ח	ΕQ		
A3	D. J	027	D. 27	L. J		

27. Suppose you know line *n* (shown below, with point (6, -5) marked) is perpendicular to line *p* (not shown) with equation $y = \frac{5}{3}x - 8$. Write the equation of line *n* in standard form (Ax + By = C).

A. 5x + 3y = -7 B. 3x + 5y = -7 C. 5x + 3y = 7 D. 5x - 7y = 3 E. 5x - 3y = 45

28. Find the value of k if you know the system of equations shown below has no solution. (kr + 6y - 13)

A. 5 B. -5
$$C. -\frac{2}{5}$$
 $D. -\frac{5}{2}$ E. $\frac{5}{2}$

A. 3

29. The quadratic equation $3x^2 - 5x + 1 = 0$ has two solutions, m and n. What is the value of |m - n|?

A. 0	$B.\frac{\sqrt{13}}{6}$	$C.\frac{\sqrt{13}}{3}$	D. $\frac{5}{3}$	E. $\frac{10+\sqrt{13}}{6}$
30. Solve the equation	$\ln \frac{w+3}{3-w} + \frac{1-4w^2}{w^2-9} = \frac{1-4w^2}{w^2-$	<u>5w</u> +3		
A. $w = -\frac{5}{22}$	B. $w = \frac{1}{2}$ C.	w = -3	D. $w = -3, w = 3$	E. No solution
31. The gravitational	force F between tw	o masses m_1 and m	$_2$ is given by $F = \frac{Gm_1m}{r^2}$	$\frac{2}{2}$. Solve for m_1 .
A. $m_1 = Fr^2 - Gm$	2 B. <i>m</i>	$_{1} = \frac{FGm_{2}}{r^{2}}$	$C. \ m_1 = \frac{Fr^2}{Gm}$	-
$D.m_1=r^2FGm_2$	E. <i>m</i>	$_{1}=\frac{F+r^{2}}{Gm_{2}}$		2
32. What day of the	week will it be one m	nillion seconds after	6:00 PM on Wednesda	γ?
A. Thursday	B. Friday	C. Saturday	D. Sunday	E. Monday
33. An exponential exponenti exponential exponential exponential exponential exponential	quation of the form <u></u>	$y = a \cdot b^x$ goes thro	ough the points (-2, 16)	and (1, 2). What is
A. 2	B. 8	C. 16	$D.\frac{1}{8}$	E. $\frac{1}{2}$

34. The equation of the parabola (shown below) can be written in several forms. Suppose you find the equation in standard form, $y = ax^2 + bx + c$. What is the value of $-\frac{b}{2a} + c$?

E.37.5

35. The parabola $y = 2x^2 - 17x + 30$ and the line $y = -x + 6$ intersect in two points. What is the sum of the x-coordinates of these two points?					
A. 17	B17	C. 6	D8	E. 8	
36. Myles recently began his first job, with a starting salary of \$50,000 for his first full year of employment. He will receive a 3% raise every year. After working 15 years for the company, what will be his projected salary for the 16 th year, rounded to the nearest dollar?					
A. \$72,500	B. \$74,525	C. \$75,629	D. \$77,898	E. \$78,950	
37. What is the sun A. 3,030	n of all numbers in B. 5,050	the sequence 3, 6, 9, C. 10,300	12, ,294, 297, 300 D. 15,150	? E. 30,300	
38. Find the greates	st integer k such th	hat 2^k is a factor of 20)!. (Recall $n! = 1 \cdot 2 \cdot$	$3 \cdot 4 \cdot \dots \cdot n$	
A. 10	B. 17	C. 18	D. 20	E. 22	
39. Aiyana can finis hours, she was join would it have taker	h her weekend cho ed by her older bro n Beau if he did the	ores in 3 hours. One v other Beau and they f 9 job alone?	veekend, after Aiyan inished the chores in	a worked alone for 1.5 45 minutes. How long	
A. 1.5 hours	B. 3 hours	C. 3.5 hours	D. 4 hours	E. 6 hours	
40. Josh is designin directly upward fro	g a special firewor m the top of a 128	k for his town's firewo -foot high building at	ork finale. The firewo a speed of 192 feet	ork will be launched per second. The	

firework's height above the ground, t seconds after launch, can be modeled by the equation $h(t) = -16t^2 + 192t + 128$. Josh wants the firework to "explode" at its maximum height. What is this maximum height?

A. 134 feet B. 304 feet C. 424 feet D. 576 feet E. 704 f	E. 704 feet
--	-------------